
LLNL-CONF-656422

Validation of Full-Domain
Massively Parallel Transport
Sweep Algorithms

T. S. Bailey, W. D. Hawkins, M. L. Adams, P. N. Brown,
A. J. Kunen, M. P. Adams, T. Smith, N. Amato, L.
Rauchwerger

July 3, 2014

2014 American Nuclear Society Winter Meeting and Nuclear
Technology Expo
Anaheim, CA, United States
November 9, 2014 through November 13, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Validation of Full-Domain Massively Parallel Transport Sweep Algorithms

Teresa Bailey1, W. Daryl Hawkins2, Marvin L. Adams2, Peter N. Brown1, Adam J. Kunen1, Michael P. Adams2, Timmie
Smith3, Nancy Amato3, Lawrence Rauchwerger3

1Lawrence Livermore National Laboratory, Livermore CA, 94551

 2Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843-3133
 3Department of Computer Science and Computer Engineering, Texas A&M University, College Station, TX 77843-3112

INTRODUCTION

The scalability of sweep algorithms has been a

somewhat disputed topic recently. Some papers have
predicted that these algorithms will scale if applied
appropriately, while others have claimed that sweep
algorithms have limited scalability. We compare the
parallel performance models for sweep algorithms to
actual computational performance using two distinctly
different discrete ordinates transport codes. We have run
both codes beyond 1Million MPI ranks on Lawrence
Livermore National Laboratory’s (LLNL) BGQ machines
(SEQUOIA and VULCAN).

PARALLEL SWEEPS

The full-domain “sweep,” in which all angular fluxes in a
problem are calculated given previous-iterate values only
for the volumetric source, forms the foundation for many
iterative methods that have desirable properties [1].
Sweep algorithms are parallelized by partitioning the
domain D into subdomains and assigning them to parallel
tasks. Subdomain boundary dependencies are either
provided by boundary conditions or by solutions to up-
wind neighboring subdomains. Unfortunately, the sweep
solution is complicated by the dependency of a given cell
on its upstream neighbors. Figure 1 illustrates how
sweeps progress from cell to cell. If each subdomain is
assigned to only one task, the figure

Fig. 1. Dependency relationships form “sweeps” across
the spatial domain. Multiple directions starting from the

same corner (black, green, red) can be pipelined.

additionally shows how sweeps are computed in parallel
and how multiple angle sweeps can be pipelined. Each
picture in the figure depicts a stage in the sweep
algorithm. We see that, in the beginning of a sweep, some
parallel tasks are idle. We call this idle time pipe fill.

There is a similar pipe empty idle time at the end of a
sweep. To achieve good parallel performance, it is clear
that reducing pipe fill and pipe empty time is paramount.

In general, each single group sweep originates from
one of the 2d corners of the spatial domain and completes
at the opposite corner (here d is the number of spatial
dimensions). If we initiate sweeps from all corners
simultaneously our pipe fill time is reduced, but we
introduce collisions (shown as gray domains in Figure 2)
which must be resolved. A collision occurs when a

Fig. 2. Simultaneous sweeps from all corners reduce pipe

fill, but create collisions (gray domains).

task has more than one angle that can be swept, and a
decision must be made about which to sweep first. Sweep
algorithms are therefore composed of two main
components: a subdomain decomposition (“partitioning”)
and a schedule that defines how the collisions are
resolved. The goal of the scheduling algorithm is to
resolve wave-front collisions in a way that minimizes
total stage count for the full sweep.

The Koch-Baker Alcouffe (KBA) algorithm [2], the
first widely adopted parallel sweep algorithm, introduced
two ideas that reduce pipe fill and pipe empty time. The
KBA spatial domain assigns columns of spatial cells to
each parallel task, essentially decomposing d−space into
d−1 dimensions so that each task only has 2(d − 1)
neighbors. Each column is then broken up into smaller
blocks, which we call subdomains. Because each task
operates on more than one subdomain, we say the
decomposition is overloaded. It is important to note that
the standard KBA algorithm begins the sweep at only one
of the eight available corners, which effectively
eliminates any wave-front collisions in the schedule.

Dorr and Still [3] and Clouse [4] applied a volumetric
spatial domain decomposition, which decomposes the
spatial domain in all dimensions into cube shaped
subdomains. These decompositions allow the sweeps to

begin at all eight corners. Dorr and Still noted that starting
angles at all eight corners would result in wave-front
collisions, but they did not discuss strategies for resolving
the collisions. Clouse developed a hard-coded schedule
that resolved collisions by using powers-of-2 valued
decomposition in space and delays in the schedule.
Clouse also developed a volumetric type decomposition
with spatial subdomain overloading to increase parallel
efficiency.

Collision resolving schedules as outlined in [6,9,10]
can be applied to both the KBA style and the volumetric
decompositions. Our results will show that these
scheduling rules will lead to predictable, efficient scaling
behavior. For two very different parallel and solution
strategies

ARDRA

ARDRA [5] is a research code developed at LLNL to

study parallel discrete ordinates transport. The code
applies a general framework to domain decompose the
angle, energy and spatial unknowns among available
parallel tasks. Typically, problems run with ARDRA are
only decomposed in space (volumetrically) and energy.
Subdomain overloading is not supported. ARDRA’s
default spatial discretization is diamond difference (finite
difference) with one spatial unknown per mesh cell.

ARDRA solves the discrete form of the transport
problem via source iteration with optional DSA
acceleration. This iterative method has the form: For i = 0,
1, · · · , until convergence, solve:

H i1  L
s
L i Q (1)

where Ψ is the discrete flux, H is the discrete form of the
streaming plus collision operator Ω · ∇ + σ, Q is the
discrete source, L is the discrete moment operator, and
the matrix Σs represents the discretized scattering
operator. ARDRA is unusual in that the code stores the
entire angular flux vector and builds the RHS of (1)
before the sweep has occurred. On each subdomain, the
basic sweep algorithm in ARDRA has the form given in
Figure 3. The model of the time to completion for this
algorithm is:

()task comm RHS RHST GS T T T ST T     (2)

with G being the number of groups, S being the number of

sweep stages, ()task commT GS T T  the time to perform

the sweep and RHST the time to calculate the RHS. We

now define parallel efficiency to be:

RHS
refref ref RHS

RHSP P RHS
P

TST S T T T
TT S T T S

T




  
 

 



. (3)

while not converged do

 Build RHS = L
s
L i Q from  i

 for g = 1:G do
 for m = 1:M do•
 Wait for incoming boundary data
 Choose angle ready to be swept•
 for z = 1:number spatial cells do

 Solve for 
g ,m,z
i1

 end for

 Communicate out-going  i1
 end for
 end for
end while

Fig. 3. ARDRA Solution Algorithm

PDT

PDT [6] is a massively parallel discrete ordinates
transport code under development at Texas A&M
University and built on the Standard Template Adaptive
Parallel Library (STAPL) [7] also under development at
Texas A&M University. PDT most often utilizes a hybrid
KBA-Volumetric decomposition, where one dimension
has two-way spatial parallelism and the other two
dimensions subdivide the remaining processors in a
square fashion. Additionally, PDT simultaneously
sweeps from all eight corners using an optimal schedule.
For this paper, PDT uses a piecewise linear discontinuous
finite element spatial disretization with eight spatial
unknowns per cell.

PDT solves the discrete form of the transport
problem via source iteration and variants, including
Krylov methods with and without diffusion
preconditioners. This requires repeated solution of the
sweep equation:

1i i
sH L L Q       (4)

where i iL   contains the moments of the angular
flux and L is the moments-to-discrete operator. For this,
PDT executes the algorithm in Figure 4. In PDT each
subdomain can be decomposed into “cell- sets”. A sweep
task is the execution of the sweep operator on a cellset for
a set of quadrature directions (an “angleset”) and a set of
energy groups (a “groupset”). The sizes of cellsets,
anglesets, and groupsets are determined by aggregation
parameters, which can be user-defined or code-selected at
runtime. The time to completion model for this algorithm
is:



  
sweep stages comm wu

dof c c m m g g

T N T T

N A T A T A T

  

   
 (5)

where Tcomm is the communication time, Twu is the time
per degree of freedom spent getting into a work function,
Ndof is the number of spatial degrees of freedom per cell,
Ac is the number of cells in a cellset, Tc is the time per
degree of freedom spent in the work-function cell loop
outside of the angle loop, Am is the number of angles in an
angleset, Tm is the time per degree of freedom spent in the
work-function angle loop outside of the group loop, Ag is
the number of groups in a groupset, and Tg is the time per
degree of freedom spent in the work-function group loop.
Parallel efficiency is defined as

,

,

sweep ref

sweep P

T

T
  (6)

PDT’s basic solver algorithm is shown in Figure 4.

while not converged do

 Build B = 
s
i Q

 for t = 1:Ntask do
 Obtain next task ID from schedule
 Wait for incoming boundary data

 for z = 1:cells in cellset do•
 Choose next cell from graph

for m = 1:angles in angleset do•
 for g = 1:groups in groupset do

 Build RHS
m,g ,z

from B
g ,z
using L

 Solve for  i1
m,g ,z

 Accumulate  i1
m,g ,z

 into i1
m,g ,z

 end for
 end for
 end for

 Communicate out-going  i1
m,g ,z

 end for
end while

Fig. 4. PDT Solution Algorithm

RESULTS

We present results from ARDRA and PDT. Both

transport codes have successfully demonstrated the ability
to perform the full-domain transport sweep using at least
1Million MPI ranks.

ARDRA

ARDRA’s scaling problem is based on the Jezebel
criticality experiment. We ran this problem in 3D with all
vacuum boundary conditions, with 48 energy groups and
3 cases for quadrature sets: S8, S12, and S16. We
perform two week scaling studies: one with spatial
parallelism only, and the second with a mixture of energy

and spatial parallelism. We ran standard power iteration
for k-effective stopping the run at 11 iterations for the
purpose of throughput. Both of our weak scaling studies
start with an initial size of one node of Sequoia, using 16
MPI ranks, with 1 rank per CPU core. Both studies have
an initial 48 × 24 × 24 spatial mesh, but decompose the
problem differently among the 16 ranks. In our first weak
scaling study we decompose the problem into 12 × 12 ×
12 cells per rank, with the resulting spatial decomposition
of Px = 4, Py = 2, and Pz = 2. Our second study uses 16-
way on-node energy decomposition, with each rank
having the entire 48 × 24 × 24 spatial mesh, but only 3
energy groups, resulting in Px = Py = Pz = 1. Weak
scaling is achieved by increasing the number of spatial
zones proportional to increasing the processor count.
ARDRA’s largest run is at SEQUOIA’s full scale, which
is 37.5 trillion unknowns using 1,572,864 MPI ranks,
resulting in 71% parallel efficiency using energy and
spatial parallelism. Results are shown in Figures 5 and 6.

Fig. 5. ARDRA Weak Scaling (Spatial Parallelism)

Fig. 6. ARDRA Weak Scaling (Spatial and Energy

Parallelism)

PDT

PDT’s weak-scaling study was performed using a 3D

problem introduced by Zerr and Azmy [8] with a single
energy group, S8 level-symmetric quadrature, vacuum
boundary conditions, a constant 4096 cells/core, and

spatial parallelism only. The cell and sub-domain sizes
remain constant as the number of MPI ranks is increased
because the volume of the problem domain is increased in
proportion to number of ranks. Figure 7 shows our model
prediction and data out to 384K MPI ranks on the
SEQUOIA machine. Each case was run using 1 MPI
rank/core. We have also demonstrated PDT’s ability to
run with 512K and 1M MPI ranks on the VULCAN
machine. In these cases, each job was run with 4 MPI
ranks/core (one rank per hardware thread). Based on
previous experience, the deviation of the data from the
model at high rank counts indicates a code issue or
inefficiency that needs to be resolved rather than a
deficiency in the model itself.

Fig. 7. PDT Weak Scaling (Spatial Parallelism)

CONCLUSION

These computational results validate the predictions
made by the sweep algorithm performance models.
Codes based on sweep algorithms and domain
decompositions implemented as described here and in the
referenced publications will scale to millions of MPI
ranks and potentially beyond. The strength of this study
is that we demonstrate the validity of our sweep algorithm
scaling predictions using two vastly different codes with
markedly different domain decomposition and spatial
discretization choices. Additional research into
algorithms and decomposition strategies, as well as code
improvements, will almost certainly result in improved
efficiencies.

ACKNOWLEDGEMENTS

Part of this work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-
07NA27344. Part of this work was funded under a
collaborative research contract from Lawrence Livermore
National Security, LLC. Part of this work was performed
under the auspices of the Center for Exascale Radiation
Transport at Texas A&M University, which is funded by
the Department of Energy, National Nuclear Security

Agency under award number DE-NA0002376.

REFERENCES

1. M. L. ADAMS and E. W. LARSEN, “Fast iterative
methods for discrete-ordinates particle transport
calculations,” Prog. Nucl. Energy, 40, No. 1, pp. 3-159,
(2002).
2. R. S. BAKER and K. R. KOCH, “An Sn Algorithm
for the Massively Parallel CM-200 Computer,” Nucl. Sci.
Eng., 128, p. 312 (1998).
3. M. R. DORR and C. H. STILL, “Concurrent Source
Iteration in the Solution of Three-dimensional,
Multigroup, Discrete Ordinates Neutron Transport,” Nucl.
Sci. Eng., 122(3), pp. 287-308 (1996).
4. C. CLOUSE, “Parallel Deterministic Neutron
Transport with AMR,” Proc. Computational Methods in
Transport Workshop, Tahoe City, CA, September 11-16,
2004.
5. U. HANEBUTTE AND P. N. BROWN, “ARDRA,
Scalable Parallel Code System to Perform Neutron and
Radiation Transport Calculations,” Lawrence Livermore
National Laboratory Technical Report UCRL-TB-132078,
February (1999).
6. M.P. ADAMS, M.L. ADAMS, W.D. HAWKINS, T.
SMITH, L. RAUCHWERGER, N.M. AMATO, T.S.
BAILEY, and R. D. FALGOUT, “Provably Optimal
Parallel Transport Sweeps on Regular Grids,” Proc.
International Conference on Mathematics and
Computational Methods Applied to Nuclear Science and
Engineering, Sun Valley, ID, May 5-9, CDROM (2013).
7. A. BUSS, HARSHVARDAN, I. PAPADOPOULOS,
O. �PEARCE, T. SMITH, G. TANASE, N. THOMAS,
X. XU, M. BIANCO, N. M. AMATO, L.
RAUCHWERGER, “STAPL: Standard Template
Adaptive Parallel Library,” SYSTOR, Haifa, Israel, June
4-6, 2010, ACM, pp.1–10, http://doi.acm.org/

8. R. J. ZERR and Y. Y. AZMY, “Solution of the
Within- Group Multidimensional Discrete Ordinates
Transport Equations on Massively Parallel Architectures,”
Trans. Amer. Nucl. Soc., 105, 429 (2011).
9. T. S. BAILEY and R. D. FALGOUT, “Analysis Of
Massively Parallel Discrete-Ordinates Transport Sweep
Algorithms With Collisions,” Proc. International
Conference on Mathematics, Computational Methods &
Reactor Physics, Saratoga Springs, May 3-7, CDROM
(2009).
10. W. D. HAWKINS, T. SMITH, M. P. ADAMS, L.
RAUCHWERGER, N. M. AMATO, and M. L. ADAMS,

“Efficient Massively Parallel Transport Sweeps,” Trans.
Amer. Nucl. Soc., 107, pp. 477-481 (2012).

